1,223 research outputs found

    Self-adaptive Authorisation in OpenStack Cloud Platform

    Get PDF
    Although major advances have been made in protection of cloud platforms against malicious attacks, little has been done regarding the protection of these platforms against insider threats. This paper looks into this challenge by introducing self-adaptation as a mechanism to handle insider threats in cloud platforms, and this will be demonstrated in the context of OpenStack. OpenStack is a popular cloud platform that relies on Keystone, its identity management component, for controlling access to its resources. The use of self-adaptation for handling insider threats has been motivated by the fact that self-adaptation has been shown to be quite effective in dealing with uncertainty in a wide range of applications. Insider threats have become a major cause for concern since legitimate, though malicious, users might have access, in case of theft, to a large amount of information. The key contribution of this paper is the definition of an architectural solution that incorporates self-adaptation into OpenStack Keystone in order to handle insider threats. For that, we have identified and analysed several insider threats scenarios in the context of the OpenStack cloud platform, and have developed a prototype that was used for experimenting and evaluating the impact of these scenarios upon the self-adaptive authorisation system for the cloud platforms

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed

    ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): ASL pipeline inventory

    Get PDF
    Purpose: To create an inventory of image processing pipelines of arterial spin labeling (ASL) and list their main features, and to evaluate the capability, flexibility, and ease of use of publicly available pipelines to guide novice ASL users in selecting their optimal pipeline. Methods: Developers self-assessed their pipelines using a questionnaire developed by the Task Force 1.1 of the ISMRM Open Science Initiative for Perfusion Imaging. Additionally, each publicly available pipeline was evaluated by two independent testers with basic ASL experience using a scoring system created for this purpose. Results: The developers of 21 pipelines filled the questionnaire. Most pipelines are free for noncommercial use (n = 18) and work with the standard NIfTI (Neuroimaging Informatics Technology Initiative) data format (n = 15). All pipelines can process standard 3D single postlabeling delay pseudo-continuous ASL images and primarily differ in their support of advanced sequences and features. The publicly available pipelines (n = 9) were included in the independent testing, all of them being free for noncommercial use. The pipelines, in general, provided a trade-off between ease of use and flexibility for configuring advanced processing options. Conclusion: Although most ASL pipelines can process the common ASL data types, only some (namely, ASLPrep, ASLtbx, BASIL/Quantiphyse, ExploreASL, and MRICloud) are well-documented, publicly available, support multiple ASL types, have a user-friendly interface, and can provide a useful starting point for ASL processing. The choice of an optimal pipeline should be driven by specific data to be processed and user experience, and can be guided by the information provided in this ASL inventory

    Variation of cataract surgery costs in four different graded providers of China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>China has the largest population of cataract patients in the world. However, the cataract surgery rate per million remains low in China. We carried out a survey on costs of cataract surgery from four different graded providers in China and analyzed differences in cost among these clinics.</p> <p>Methods</p> <p>1,189 patients were recruited for the study in four eye clinics, located in two provinces, Guangdong province in southern China and Hubei province in central China. The average cost of each cataract surgery episode was calculated including cost of intraocular lens, cost of drugs and facility cost. We also collected information on reimbursement and disposable annual income of local residents.</p> <p>Results</p> <p>Mean total cost per cataract intervention of four different providers varied considerably, ranging from US1,293inUnionHospitaltoUS 1,293 in Union Hospital to US 536 in Jingshan County Hospital. In all providers, except for Jingshan County Hospital, the cost exceeded annual disposable income of local rural residents. As to the proportion of patients with reimbursement, the figure for Union Hospital was only 36%, while for other three clinics it was more than 60%. There was a significant difference between mean reimbursement ratios, with the highest ratio in Zhongshan Ophthalmic Center being 71%.</p> <p>Conclusions</p> <p>Significant differences in costs of cataract surgery were found among the 4 different graded providers. A part of the cost was borne by patients. Proportion of patients with reimbursement and mean reimbursement ratios were higher in economically developed regions than in economically developing regions. Much more financial support should be directed into the rural New Cooperative Medical Scheme to raise the reimbursement ratio in rural China.</p

    Matrix Development in Self-Assembly of Articular Cartilage

    Get PDF
    Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG) content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days) were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan). Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is suggested that exogenous stimulation may be necessary after 4 wks to further augment the functionality of developing constructs

    Paintable Battery

    Get PDF
    If the components of a battery, including electrodes, separator, electrolyte and the current collectors can be designed as paints and applied sequentially to build a complete battery, on any arbitrary surface, it would have significant impact on the design, implementation and integration of energy storage devices. Here, we establish a paradigm change in battery assembly by fabricating rechargeable Li-ion batteries solely by multi-step spray painting of its components on a variety of materials such as metals, glass, glazed ceramics and flexible polymer substrates. We also demonstrate the possibility of interconnected modular spray painted battery units to be coupled to energy conversion devices such as solar cells, with possibilities of building standalone energy capture-storage hybrid devices in different configurations

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans
    corecore